Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(3): 1949-1960, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38252624

RESUMEN

The suppressor of T cell receptor signaling (Sts) proteins are negative regulators of immune signaling. Genetic inactivation of these proteins leads to significant resistance to infection. From a 590,000 compound high-throughput screen, we identified the 2-(1H)-quinolinone derivative, rebamipide, as a putative inhibitor of Sts phosphatase activity. Rebamipide, and a small library of derivatives, are competitive, selective inhibitors of Sts-1 with IC50 values from low to submicromolar. SAR analysis indicates that the quinolinone, the acid, and the amide moieties are all essential for activity. A crystal structure confirmed the SAR and reveals key interactions between this class of compound and the protein. Although rebamipide has poor cell permeability, we demonstrated that a liposomal preparation can inactivate the phosphatase activity of Sts-1 in cells. These studies demonstrate that Sts-1 enzyme activity can be pharmacologically inactivated and provide foundational tools and insights for the development of immune-enhancing therapies that target the Sts proteins.


Asunto(s)
Alanina/análogos & derivados , Histidina , Quinolonas , Receptores de Antígenos de Linfocitos T , Quinolonas/farmacología , Monoéster Fosfórico Hidrolasas/química , Inhibidores Enzimáticos
2.
Cell Death Dis ; 14(9): 620, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735513

RESUMEN

Pancreatic cancer is one of the deadliest diseases in human malignancies. Among total pancreatic cancer patients, ~10% of patients are categorized as familial pancreatic cancer (FPC) patients, carrying germline mutations of the genes involved in DNA repair pathways (e.g., BRCA2). Personalized medicine approaches tailored toward patients' mutations would improve patients' outcome. To identify novel vulnerabilities of BRCA2-deficient pancreatic cancer, we generated isogenic Brca2-deficient murine pancreatic cancer cell lines and performed high-throughput drug screens. High-throughput drug screening revealed that Brca2-deficient cells are sensitive to Bromodomain and Extraterminal Motif (BET) inhibitors, suggesting that BET inhibition might be a potential therapeutic approach. We found that BRCA2 deficiency increased autophagic flux, which was further enhanced by BET inhibition in Brca2-deficient pancreatic cancer cells, resulting in autophagy-dependent cell death. Our data suggests that BET inhibition can be a novel therapeutic strategy for BRCA2-deficient pancreatic cancer.


Asunto(s)
Muerte Celular Autofágica , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Autofagia/genética , Proteína BRCA2/genética , Páncreas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
3.
bioRxiv ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37398312

RESUMEN

Pancreatic cancer is one of the deadliest diseases in human malignancies. Among total pancreatic cancer patients, ∼10% of patients are categorized as familial pancreatic cancer (FPC) patients, carrying germline mutations of the genes involved in DNA repair pathways ( e.g., BRCA2 ). Personalized medicine approaches tailored toward patients' mutations would improve patients' outcome. To identify novel vulnerabilities of BRCA2 -deficient pancreatic cancer, we generated isogenic Brca2 -deficient murine pancreatic cancer cell lines and performed high-throughput drug screens. High-throughput drug screening revealed that Brca2 -deficient cells are sensitive to Bromodomain and Extraterminal Motif (BET) inhibitors, suggesting that BET inhibition might be a potential therapeutic approach. We found that BRCA2 deficiency increased autophagic flux, which was further enhanced by BET inhibition in Brca2 -deficient pancreatic cancer cells, resulting in autophagy-dependent cell death. Our data suggests that BET inhibition can be a novel therapeutic strategy for BRCA2 -deficient pancreatic cancer.

4.
Cancers (Basel) ; 15(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37444398

RESUMEN

BACKGROUND: Genomic profiling cannot solely predict the complexity of how tumor cells behave in their in vivo microenvironment and their susceptibility to therapies. The aim of the study was to establish a functional drug prediction model utilizing patient-derived GBM tumor samples for in vitro testing of drug efficacy followed by in vivo validation to overcome the disadvantages of a strict pharmacogenomics approach. METHODS: High-throughput in vitro pharmacologic testing of patient-derived GBM tumors cultured as 3D organoids offered a cost-effective, clinically and phenotypically relevant model, inclusive of tumor plasticity and stroma. RNAseq analysis supplemented this 128-compound screening to predict more efficacious and patient-specific drug combinations with additional tumor stemness evaluated using flow cytometry. In vivo PDX mouse models rapidly validated (50 days) and determined mutational influence alongside of drug efficacy. We present a representative GBM case of three tumors resected at initial presentation, at first recurrence without any treatment, and at a second recurrence following radiation and chemotherapy, all from the same patient. RESULTS: Molecular and in vitro screening helped identify effective drug targets against several pathways as well as synergistic drug combinations of cobimetinib and vemurafenib for this patient, supported in part by in vivo tumor growth assessment. Each tumor iteration showed significantly varying stemness and drug resistance. CONCLUSIONS: Our integrative model utilizing molecular, in vitro, and in vivo approaches provides direct evidence of a patient's tumor response drifting with treatment and time, as demonstrated by dynamic changes in their tumor profile, which may affect how one would address that drift pharmacologically.

5.
SLAS Discov ; 27(3): 159-166, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35306207

RESUMEN

Recent technological advances have enabled 3D tissue culture models for fast and affordable HTS. We are no longer bound to 2D models for anti-cancer agent discovery, and it is clear that 3D tumor models provide more predictive data for translation of preclinical studies. In a previous study, we validated a microplate 3D spheroid-based technology for its compatibility with HTS automation. Small-scale screens using approved drugs have demonstrated that drug responses tend to differ between 2D and 3D cancer cell proliferation models. Here, we applied this 3D technology to the first ever large-scale screening effort completing HTS on over 150K molecules against primary pancreatic cancer cells. It is the first demonstration that a screening campaign of this magnitude using clinically relevant, ex-vivo 3D pancreatic tumor models established directly from biopsy, can be readily achieved in a fashion like traditional drug screen using 2D cell models. We identified four unique series of compounds with sub micromolar and even low nanomolar potency against a panel of patient derived pancreatic organoids. We also applied the 3D technology to test lead efficacy in autologous cancer associated fibroblasts and found a favorable profile for better efficacy in the cancer over wild type primary cells, an important milestone towards better leads. Importantly, the initial leads have been further validated in across multiple institutes with concordant outcomes. The work presented here represents the genesis of new small molecule leads found using 3D models of primary pancreas tumor cells.


Asunto(s)
Organoides , Neoplasias Pancreáticas , Proliferación Celular , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas
6.
SLAS Discov ; 27(2): 128-139, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35123134

RESUMEN

Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder. There are no drugs to treat the core symptoms. De novo mutations often play an important role in ASD and multiple high-risk loci have been identified in the last decade. These mutations range from copy number variants to small insertion/deletion and single nucleotide variants. Large-scale exome sequencing has identified over 100 risk genes that are associated with ASD. Both etiological heterogeneity and unavailability of human neurons remain major hurdles in understanding the pathophysiology of ASD and testing of new drug candidates. Hence, the most achievable and relevant model to screen for potential drugs is human neurons from inducible pluripotent stem cells (iPSCs), including those from individuals with genetic mutations. In this study, we tested stem cells from individuals carrying mutations in ADNP, FOXP1 or SHANK3. They were scaled and reprogrammed to glutamatergic neurons and assessed for the effects of their specific mutations on neurite outgrowth. High Content Analysis allowed us to observe phenotypic differences between ASD neurons compared to controls, in terms of neuron number, neurite number and neurite length per neuron. Further, neurons were derived from both patient derived and genetically modified iPSCs with DDX3X mutation which were tested against 5088 drug like compounds. We assessed individual compound effects on the induced neurons to determine if they elicited changes that would indicate neurite growth (neuroprotection) or, alternatively, reduce outgrowth and hence appear neurotoxic. This report includes all methods, phenotypic outcomes, and results for the largest ASD small molecule screening effort done to date.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Factores de Transcripción Forkhead/farmacología , Humanos , Neuritas , Neurogénesis , Proyección Neuronal/genética , Neuronas , Proteínas Represoras/farmacología
7.
SLAS Technol ; 27(3): 180-186, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35066236

RESUMEN

Open-source projects continue to grow in popularity alongside open-source educational resources, software, and hardware tools. The impact of this increased availability of open-source technologies is that end users are empowered to have greater control over the tools that they work with. This trend extends in the life science laboratory space, where new open-source projects are routinely being published that allow users to build and modify scientific equipment specifically tailored to their needs, often at a reduced cost from equivalent commercial offerings. Recently, we identified a need for a compact orbital shaker that would be usable in temperature and humidity-controlled incubators to support the development and execution of a high-throughput suspension cell-based assay. Based on the requirements provided by staff biologists, an open-source project known as the DIYbio orbital shaker was identified on Thingiverse, then quickly prototyped and tested. The initial orbital shaker prototype based on the DIYbio design underwent an iterative prototyping and design process that proved to be straightforward due to the open-source nature of the project. The result of these efforts has been the successful initial deployment of ten shakers as of August 2021. This afforded us the scalability and efficacy needed to complete a large-scale screening campaign in less time and at less cost than if we purchased larger, less adaptable orbital shakers. Lessons learned from prototyping, modifying, validating, deploying and maintaining laboratory devices based on an open-source design in support of a full-scale drug discovery high-throughput screening effort are described within this manuscript.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Programas Informáticos , Descubrimiento de Drogas , Humanos
8.
SLAS Discov ; 26(9): 1177-1188, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112017

RESUMEN

Regulators of G protein signaling (RGS) proteins serve as critical regulatory nodes to limit the lifetime and extent of signaling via G protein-coupled receptors (GPCRs). Previously, approaches to pharmacologically inhibit RGS activity have mostly focused on the inhibition of GTPase activity by interrupting the interaction of RGS proteins with the G proteins they regulate. However, several RGS proteins are also regulated by association with binding partners. A notable example is the mammalian RGS7 protein, which has prominent roles in metabolic control, vision, reward, and actions of opioid analgesics. In vivo, RGS7 exists in complex with the binding partners type 5 G protein ß subunit (Gß5) and R7 binding protein (R7BP), which control its stability and activity, respectively. Targeting the whole RGS7/Gß5/R7BP protein complex affords the opportunity to allosterically tune opioid receptor signaling following opioid engagement while potentially bypassing undesirable side effects. Hence, we implemented a novel strategy to pharmacologically target the interaction between RGS7/Gß5 and R7BP. To do so, we searched for protein complex inhibitors using a time-resolved fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) assay that measures compound-mediated alterations in the FRET signal between RGS7/Gß5 and R7BP. We performed two HTS campaigns, each screening ~100,000 compounds from the Scripps Drug Discovery Library (SDDL). Each screen yielded more than 100 inhibitors, which will be described herein.


Asunto(s)
Descubrimiento de Drogas , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas RGS/metabolismo , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Complejos Multiproteicos/agonistas , Complejos Multiproteicos/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas
9.
SLAS Technol ; 24(4): 420-428, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31225974

RESUMEN

Affordable and physiologically relevant three-dimensional (3D) cell-based assays used in high-throughput screening (HTS) are on the rise in early drug discovery. These technologies have been aided by the recent adaptation of novel microplate treatments and spheroid culturing techniques. One such technology involves the use of nanoparticle (NanoShuttle-PL) labeled cells and custom magnetic drives to assist in cell aggregation to ensure rapid 3D structure formation after the cells have been dispensed into microtiter plates. Transitioning this technology from a low-throughput manual benchtop application, as previously published by our lab, into a robotically enabled format achieves orders of magnitude greater throughput but required the development of specialized support hardware. This effort included in-house development, fabrication, and testing of ancillary devices that assist robotic handing and high-precision placement of microtiter plates into an incubator embedded with magnetic drives. Utilizing a "rapid prototyping" approach facilitated by cloud-based computer-aided design software, we built the necessary components using hobby-grade 3D printers with turnaround times that rival those of traditional manufacturing/development practices at a substantially reduced cost. This approach culminated in a first-in-class HTS-compatible 3D system in which we have coupled 3D bioprinting to a fully automated HTS robotic platform utilizing our novel magnetic incubator shelf assemblies.


Asunto(s)
Automatización de Laboratorios/métodos , Técnicas de Cultivo de Célula/métodos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento , Magnetismo , Robótica/métodos , Esferoides Celulares/efectos de los fármacos , Automatización de Laboratorios/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Evaluación Preclínica de Medicamentos/instrumentación , Robótica/instrumentación
10.
Proc Natl Acad Sci U S A ; 116(17): 8360-8369, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30971495

RESUMEN

In Ig light-chain (LC) amyloidosis (AL), the unique antibody LC protein that is secreted by monoclonal plasma cells in each patient misfolds and/or aggregates, a process leading to organ degeneration. As a step toward developing treatments for AL patients with substantial cardiac involvement who have difficulty tolerating existing chemotherapy regimens, we introduce small-molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which can slow or stop the amyloidogenicity cascade at its origin. A protease-coupled fluorescence polarization-based high-throughput screen was employed to identify small molecules that kinetically stabilize LCs. NMR and X-ray crystallographic data demonstrate that at least one structural family of hits bind at the LC-LC dimerization interface within full-length LCs, utilizing variable-domain residues that are highly conserved in most AL patients. Stopping the amyloidogenesis cascade at the beginning is a proven strategy to ameliorate postmitotic tissue degeneration.


Asunto(s)
Amiloide , Cadenas Ligeras de Inmunoglobulina , Estabilidad Proteica , Amiloide/química , Amiloide/metabolismo , Amiloidosis , Ensayos Analíticos de Alto Rendimiento , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Cinética , Multimerización de Proteína
11.
SLAS Discov ; 24(3): 386-397, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30682260

RESUMEN

The Scripps Research Molecular Screening Center (SRMSC) was founded in 2004 and comprises more than $22 million of specialized automation. As part of the Translational Research Institute (TRI), it comprises early drug discovery labs and medicinal chemistry. Together with Scripps Research at the La Jolla, California, campus, this represents one of the most competitive academic industrial screening centers worldwide. The SRMSC uses automated platforms, one a screening cell and the other a cherry-picking platform. Matched technologies are available throughout Scripps to allow scientists to develop assays and prepare them for automated screening. The library comprises more than 1 million drug-like compounds, including a proprietary collection of >665,000 molecules. Internal chemistry has included ~40,000 unique compounds that are not found elsewhere. These collections are screened against a myriad of disease targets, including cell-based and biochemical assays that are provided by Scripps faculty or from global investigators. Scripps has proven competence in all detection formats, including high-content analysis, fluorescence, bioluminescence resonance energy transfer (BRET), time-resolved fluorescence resonance energy transfer (TR-FRET), fluorescence polarization (FP), luminescence, absorbance, AlphaScreen, and Ca++ signaling. These technologies are applied to NIH-derived collaborations as well as biotech and pharma initiatives. The SRMSC and TRI are recognized for discovering multiple leads, including Ozanimod.


Asunto(s)
Academias e Institutos , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Investigación Biomédica Traslacional , Automatización , California , Humanos , Programas Informáticos
12.
Assay Drug Dev Technol ; 16(5): 278-288, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30019946

RESUMEN

GPR119 drug discovery efforts in the pharmaceutical industry for the treatment of type 2 diabetes mellitus (T2DM) and obesity, were initiated based on its restricted distribution in pancreas and GI tract, and its possible role in glucose homeostasis. While a number of lead series have emerged, the pharmacological endpoints they provide have not been clear. In particular, many lead series have demonstrated loss of efficacy and significant toxic side effects. Thus, we sought to identify novel, potent, positive modulators of GPR119. In this study, we have successfully developed and optimized a high-throughput screening strategy to identify GPR119 modulators using a live cell assay format that utilizes a cyclic nucleotide-gated channel as a biosensor for cAMP production. Our high-throughput screening (HTS) approach is unique to that of previous HTS approaches targeting this receptor, as changes in cAMP were measured both in the presence and absence of an EC10 of the endogenous ligand, oleoylethanolamide, enabling detection of both agonists and potential allosteric modulators in a single assay. From these efforts, we have identified positive modulators of GPR119 with similar as well as unique scaffolds compared to existing compounds and similar as well as unique signaling properties. Our compounds will not only serve as novel molecular probes to better understand GPR119 pleiotropic signaling and the underlying physiological consequences of receptor activation, but are also well-suited for translation as potential therapeutic agents.


Asunto(s)
Endocannabinoides/farmacología , Hipoglucemiantes/farmacología , Ácidos Oléicos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Cultivadas , Endocannabinoides/química , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipoglucemiantes/química , Estructura Molecular , Ácidos Oléicos/química , Receptores Acoplados a Proteínas G/metabolismo
13.
Oncogene ; 37(32): 4372-4384, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29743592

RESUMEN

The RAS proteins are the most frequently mutated oncogenes in cancer, with highest frequency found in pancreatic, lung, and colon tumors. Moreover, the activity of RAS is required for the proliferation and/or survival of these tumor cells and thus represents a high-value target for therapeutic development. Direct targeting of RAS has proven challenging for multiple reasons stemming from the biology of the protein, the complexity of downstream effector pathways and upstream regulatory networks. Thus, significant efforts have been directed at identifying downstream targets on which RAS is dependent. These efforts have proven challenging, in part due to confounding factors such as reliance on two-dimensional adherent monolayer cell cultures that inadequately recapitulate the physiologic context to which cells are exposed in vivo. To overcome these issues, we implemented a high-throughput screening (HTS) approach using a spheroid-based 3-dimensional culture format, thought to more closely reflect conditions experienced by cells in vivo. Using isogenic cell pairs, differing in the status of KRAS, we identified Proscillaridin A as a selective inhibitor of cells harboring the oncogenic KRasG12V allele. Significantly, the identification of Proscillaridin A was facilitated by the 3D screening platform and would not have been discovered employing standard 2D culturing methods.


Asunto(s)
Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Antineoplásicos/farmacología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Fenotipo , Proscilaridina/farmacología , Transducción de Señal/genética
14.
J Biomol Screen ; 21(7): 713-21, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27146384

RESUMEN

There is interest in developing inhibitors of human group III secreted phospholipase A2 (hGIII-sPLA2) because this enzyme plays a role in mast cell maturation. There are no potent inhibitors for hGIII-sPLA2 reported to date, so we adapted a fluorescence-based enzyme activity monitoring method to a high-throughput screening format. We opted to use an assay based on phospholipid substrate present in phospholipid vesicles since this matrix more closely resembles the natural substrate of hGIII-sPLA2, as opposed to phospholipid/detergent mixed micelles. The substrate is a phospholipid analogue containing BODIPY fluorophores dispersed as a minor component in vesicles of nonfluorescent phospholipids. Action of hGIII-sPLA2 liberates a free fatty acid from the phospholipid, leading to a reduction in quenching of the fluorophore and hence an increase in fluorescence. The assay uses optical detection in a 1536-well plate format with an excitation wavelength far away from the UV range so as to minimize false-positive library hits that result from quenching of the fluorescence. The high-throughput screen was successfully carried out on a library of 370,276 small molecules. Several hits were discovered, and data have been uploaded to PubChem. This study describes the first high-throughput optical screening assay for secreted phospholipase A2 inhibitors based on a phospholipid vesicle substrate.


Asunto(s)
Inhibidores Enzimáticos/aislamiento & purificación , Fluorometría/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Fosfolipasas A2 Secretoras/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Colorantes Fluorescentes/química , Humanos , Cinética , Mastocitos/química , Mastocitos/metabolismo , Fosfolipasas A2 Secretoras/química , Fosfolípidos/química , Bibliotecas de Moléculas Pequeñas/análisis
15.
PLoS One ; 10(3): e0121833, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811598

RESUMEN

Constitutively active BCR-ABL kinase fusions are causative mutations in the pathogenesis of hematopoietic neoplasias including chronic myelogenous leukemia (CML). Although these fusions have been successfully targeted with kinase inhibitors, drug-resistance and relapse continue to limit long-term survival, highlighting the need for continued innovative drug discovery. We developed a time-resolved Förster resonance energy transfer (TR-FRET) -based assay to identify compounds that disrupt stimulation of the ABL kinase by blocking its ability to bind the positive regulator RIN1. This assay was used in a high throughput screen (HTS) of two small molecule libraries totaling 444,743 compounds. 708 confirmed hits were counter-screened to eliminate off-target inhibitors and reanalyzed to prioritize compounds with IC50 values below 10 µM. The CML cell line K562 was then used to identify five compounds that decrease MAPK1/3 phosphorylation, which we determined to be an indicator of RIN1-dependent ABL signaling. One of these compounds is a thiadiazole, and the other four are structurally related acyl piperidine amides. Notably, these five compounds lower cellular BCR-ABL1 kinase activity by blocking a positive regulatory interaction rather than directly inhibiting ABL catalytic function.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Biflavonoides/farmacología , Catequina/análogos & derivados , Catequina/farmacología , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Fusión bcr-abl/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Células K562 , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química , Factores de Tiempo
16.
ACS Chem Biol ; 10(4): 925-32, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25602368

RESUMEN

Platelet-activating factor acetylhydrolases (PAFAHs) 1b2 and 1b3 are poorly characterized serine hydrolases that form a complex with a noncatalytic protein (1b1) to regulate brain development, spermatogenesis, and cancer pathogenesis. Determining physiological substrates and biochemical functions for the PAFAH1b complex would benefit from selective chemical probes that can perturb its activity in living systems. Here, we report a class of tetrahydropyridine reversible inhibitors of PAFAH1b2/3 discovered using a fluorescence polarization-activity-based protein profiling (fluopol-ABPP) screen of the NIH 300,000+ compound library. The most potent of these agents, P11, exhibited IC50 values of ∼40 and 900 nM for PAFAH1b2 and 1b3, respectively. We confirm selective inhibition of PAFAH1b2/3 in cancer cells by P11 using an ABPP protocol adapted for in situ analysis of reversible inhibitors and show that this compound impairs tumor cell survival, supporting a role for PAFAH1b2/3 in cancer.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Línea Celular Tumoral/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Polarización de Fluorescencia/métodos , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Proteómica/métodos , Piridinas/química , Piridinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
17.
ACS Chem Biol ; 10(2): 364-71, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25457457

RESUMEN

Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within activated macrophages. A previously reported genetic screen revealed that Mtb loses this ability when the mycobacterial acid resistance protease (marP) gene is disrupted. In the present study, a high throughput screen (HTS) of compounds against the protease domain of MarP identified benzoxazinones as inhibitors of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2'-methylphenyl)-4H-1,3-benzoxazin-4-one), acylated MarP and lowered Mtb's pHIB and survival during incubation at pH 4.5. BO43 had similar effects on MarP-deficient Mtb, suggesting the existence of additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T, with Mycobacterium bovis variant bacille Calmette-Guérin (BCG) followed by click chemistry with azido-biotin identified both the MarP homologue and the high temperature requirement A1 (HtrA1) homologue, an essential protein. Thus, the chemical probe identified through a target-based screen not only reacted with its intended target in the intact cells but also implicated an additional enzyme that had eluded a genetic screen biased against essential genes.


Asunto(s)
Homeostasis , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Periplasma/enzimología , Serina Proteasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoxazinas/química , Benzoxazinas/farmacología , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Concentración de Iones de Hidrógeno , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estructura Molecular , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/genética , Serina Proteasas/genética , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología
18.
J Biomol Screen ; 19(7): 1107-15, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24619116

RESUMEN

The target of this study, the PfM18 aspartyl aminopeptidase (PfM18AAP), is the only AAP present in the genome of the malaria parasite Plasmodium falciparum. PfM18AAP is a metallo-exopeptidase that exclusively cleaves N-terminal acidic amino acids glutamate and aspartate. It is expressed in parasite cytoplasm and may function in concert with other aminopeptidases in protein degradation, of, for example, hemoglobin. Previous antisense knockdown experiments identified a lethal phenotype associated with PfM18AAP, suggesting that it is a valid target for new antimalaria therapies. To identify inhibitors of PfM18AAP function, a fluorescence enzymatic assay was developed using recombinant PfM18AAP enzyme and a fluorogenic peptide substrate (H-Glu-NHMec). This was screened against the Molecular Libraries Probe Production Centers Network collection of ~292,000 compounds (the Molecular Libraries Small Molecule Repository). A cathepsin L1 (CTSL1) enzyme-based assay was developed and used as a counter screen to identify compounds with nonspecific activity. Enzymology and phenotypic assays were used to determine mechanism of action and efficacy of selective and potent compounds identified from high-throughput screening. Two structurally related compounds, CID 6852389 and CID 23724194, yielded micromolar potency and were inactive in CTSL1 titration experiments (IC50>59.6 µM). As measured by the K(i) assay, both compounds demonstrated micromolar noncompetitive inhibition in the PfM18AAP enzyme assay. Both CID 6852389 and CID 23724194 demonstrated potency in malaria growth assays (IC504 µM and 1.3 µM, respectively).


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Antimaláricos/química , Glutamil Aminopeptidasa/antagonistas & inhibidores , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/farmacología , Catepsina L/química , Análisis por Conglomerados , Diseño de Fármacos , Eritrocitos/parasitología , Fasciola hepatica/enzimología , Glutamil Aminopeptidasa/química , Humanos , Concentración 50 Inhibidora , Cinética , Péptidos/metabolismo , Plasmodium falciparum/enzimología , Proteínas Recombinantes/química , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Espectrometría de Fluorescencia , Especificidad por Sustrato
19.
Bioorg Med Chem Lett ; 23(3): 839-43, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23260346

RESUMEN

Lipoprotein-associated phospholipase A(2) (Lp-PLA(2) or PLA(2)G7) binds to low-density lipoprotein (LDL) particles, where it is thought to hydrolyze oxidatively truncated phospholipids. Lp-PLA(2) has also been implicated as a pro-tumorigenic enzyme in human prostate cancer. Several inhibitors of Lp-PLA(2) have been described, including darapladib, which is currently in phase 3 clinical development for the treatment of atherosclerosis. The selectivity that darapladib and other Lp-PLA(2) inhibitors display across the larger serine hydrolase family has not, however, been reported. Here, we describe the use of both general and tailored activity-based probes for profiling Lp-PLA(2) and inhibitors of this enzyme in native biological systems. We show that both darapladib and a novel class of structurally distinct carbamate inhibitors inactivate Lp-PLA(2) in mouse tissues and human cell lines with high selectivity. Our findings thus identify both inhibitors and chemoproteomic probes that are suitable for investigating Lp-PLA(2) function in biological systems.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/antagonistas & inhibidores , Piperazinas/química , Quinolinas/química , Animales , Benzaldehídos/farmacología , Carbamatos/síntesis química , Carbamatos/química , Carbamatos/farmacología , Línea Celular Tumoral , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Estructura Molecular , Oximas/farmacología , Piperazinas/farmacología , Quinolinas/farmacología
20.
PLoS One ; 7(7): e41355, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844464

RESUMEN

The T box transcription factor TBX2, a master regulator of organogenesis, is aberrantly amplified in aggressive human epithelial cancers. While it has been shown that overexpression of TBX2 can bypass senescence, a failsafe mechanism against cancer, its potential role in tumor invasion has remained obscure. Here we demonstrate that TBX2 is a strong cell-autonomous inducer of the epithelial-mesenchymal transition (EMT), a latent morphogenetic program that is key to tumor progression from noninvasive to invasive malignant states. Ectopic expression of TBX2 in normal HC11 and MCF10A mammary epithelial cells was sufficient to induce morphological, molecular, and behavioral changes characteristic of EMT. These changes included loss of epithelial adhesion and polarity gene (E-cadherin, ß-catenin, ZO1) expression, and abnormal gain of mesenchymal markers (N-cadherin, Vimentin), as well as increased cell motility and invasion. Conversely, abrogation of endogenous TBX2 overexpression in the malignant human breast carcinoma cell lines MDA-MB-435 and MDA-MB-157 led to a restitution of epithelial characteristics with reciprocal loss of mesenchymal markers. Importantly, TBX2 inhibition abolished tumor cell invasion and the capacity to form lung metastases in a Xenograft mouse model. Meta-analysis of gene expression in over one thousand primary human breast tumors further showed that high TBX2 expression was significantly associated with reduced metastasis-free survival in patients, and with tumor subtypes enriched in EMT gene signatures, consistent with a role of TBX2 in oncogenic EMT. ChIP analysis and cell-based reporter assays further revealed that TBX2 directly represses transcription of E-cadherin, a tumor suppressor gene, whose loss is crucial for malignant tumor progression. Collectively, our results uncover an unanticipated link between TBX2 deregulation in cancer and the acquisition of EMT and invasive features of epithelial tumor cells.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/patología , Proteínas de Dominio T Box/metabolismo , Animales , Cadherinas/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Silenciador del Gen , Humanos , Glándulas Mamarias Humanas/efectos de los fármacos , Glándulas Mamarias Humanas/metabolismo , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA